

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Separation and hyphenated techniques in the analysis of bioactive compounds

Course

Field of study Year/Semester

Bioinformatics 2/4

Area of study (specialization) Profile of study

- general academic
Level of study Course offered in

Second-cycle studies polish

Form of study Requirements

full-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

15 15 0

Tutorials Projects/seminars

0 0

Number of credit points

2

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr hab. inż. Agnieszka Zgoła-Grześkowiak, prof. dr hab. inż. Joanna Zembrzuska

PP

e-mail: joanna.zembrzuska@put.poznan.pl e-mail: agnieszka.zgola-

grzeskowiak@put.poznan.pl phone +48 61 665 20 15

phone +48 61 665 20 33 Faculty of Chemical Technology

Faculty of Chemical Technology Berdychowo 4, 60-965 Poznan

Berdychowo 4, 60-965 Poznan dr inż. Wojciech Smułek

e-mail: wojciech.smulek@put.poznan.pl

phone +48 61 665 36 71

Faculty of Chemical Technology

Berdychowo 4, 60-965 Poznan

Prerequisites

Knowledge of the structure of atoms and molecules. The student should be able to self-educate and

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

understand the need to complete his / her education and improve personal and professional competences.

Course objective

The aim of the course is to familiarize students with the possibilities of using combined techniques in the determination of bioactive compounds in biological samples.

Course-related learning outcomes

Knowledge

The student will learn the techniques and methods of identifying biomolecules and biologically active compounds [K_W02].

The student will learn about chemistry issues that are useful in formulating and solving simple bioinformatics tasks, covering the basic concepts and laws of organic chemistry [K W06].

The student will learn the basic principles of occupational health and safety and ergonomics while working in an analytical laboratory [K_W14].

Skills

The student is able to use analytical methods for the quantitative and qualitative determination of biochemical compounds and assess their usefulness [K_U03].

The student is able, under the supervision of a research tutor, to use analytical methods to formulate and solve research tasks [K U06].

The student is able to use the language adequate to undertaken scientific discussions in communication with various environments [K_U09].

The student is able to independently acquire knowledge and improve his qualifications [K_U17].

The student is able to obtain information from literature, databases and other properly selected sources, also in English [K_U01].

Social competences

The student understands the need for self-education and improving his / her professional competences. [K K01].

The student understands the need to define priorities for the implementation of a task defined by himself or others [K_K03].

The student understands the need to take responsibility for the decisions made. [K_K05].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

A test after a cycle of lectures, tests during laboratory courses.

Programme content

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Introduction to separation techniques (separation of sample components) and mass spectrometry (identification and determination of analytes).

Chromatographic separation techniques - comparison of liquid and gas chromatography - types of mobile and stationary phases and their influence on the separation of sample components.

Mass spectra and their interpretation - spectra libraries.

Ionization methods - possibilities and effects of their application (EI, CI, ESI, APCI, MALDI, ICP).

Mass analyzers - comparison of the working method, obtained resolution and accuracy, tandem spectrometry.

Methods of sample preparation - lyophilization, extraction, derivatization, use of enzymes.

Quantitative analysis - matrix effect, application of isotope enriched standards, validation of analytical methods.

Teaching methods

A lecture - a multimedia presentation containing the above program content.

Laboratory exercises:

- identification and determination of phenolic acids in plant extracts,
- determination of caffeine in infusions and beverages by the method based on solid phase extraction and LC-MS / MS technique,
- the use of derivatization in the analysis of biological samples,
- the use of MS spectral libraries in the identification of cellular metabolites.

Bibliography

Basic

- 1. E. de Hoffmann, J. Charette, V. Stroobant "Spektrometria mas" Wydawnictwo NT, Warszawa1994
- 2. R. A.W. Johnstone, M. E. Rose "Spektrometria mas" Wydawnictwo PWN, Warszawa 2001
- 3. R. M. Silverstein, F. X. Webster, D. J. Kiemle "Spektroskopowe metody identyfikacji związków organicznych, Wydawnictwo PWN, Warszawa 2007
- 4. A. S. Płaziak, K. Golankiewicz "Wprowadzenie do spektrometrii masowej związków organicznych"

Wydawnictwo ISAT, Poznań 1992

5. P. Suder, A. Bodzoń-Kułakowska, J. Silberring "Spektrometria Mas" Wydawnictwo AGH, Kraków 2001

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 6. W. Danikiewicz "Spektrometria mas. Podstawy i zastosowania" PWN, Warszawa 2020
- 7. Z. Witkiewicz, Podstawy chromatografii, WNT, Warszawa 1995

Additional

- 1. J. Namieśnik, Z. Jamórgiewicz, M. Pilarczyk, L. Torres, Przygotowanie próbek środowiskowych do analizy, WNT Warszawa 2000
- 2.W. Szczepaniak, Metody instrumentalne w analizie chemicznej, PWN, Warszawa 2002
- 3. Scientific papers

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	30	1,5
Student's own work (literature studies, preparation for	20	0,5
laboratory classess, preparation for tests, preparation of the results of laboratory classess) ¹		

_

¹ delete or add other activities as appropriate